January 14, 2011

Re: Notice of Ex Parte Presentation in LightSquared Subsidiary LLC Application for Modification of Authority for Ancillary Terrestrial Component. File No. SAT-MOD-20101118-00239

Dear Ms. Dortch:

On January 13, 2011, representatives of the United States GPS Industry Council ("GPS Industry Council") and several member companies met with Commissioner Baker and Charles Mathias (Commissioner Baker’s Senior Legal Advisor) to discuss the prospect of harmful interference to the installed user base of L-band space services from the above-referenced proposal to allow co-primary terrestrial services to operate in the L-band spectrum allocated to mobile-satellite services. The GPS Industry Council was represented by the participants listed on Appendix 1 to this Letter. The application proceeding has been designated to have permit-but-disclose status for purposes of the Commission’s ex parte rules.

The participants discussed the points and issues detailed on the presentation that is included as Appendix 2 to this letter. The GPS Industry Council also provided Commissioner Baker and Mr. Mathias with a copy of the January 7, 2011 letter that the Air Transport Association ("ATA") filed in the instant proceeding. The ATA letter is included as Appendix 3 to this letter. Two additional letters relevant to the points and issues discussed were provided to the Commissioner Baker and Mr. Mathias following the meeting. Appendices 4 and 5 contain the January 13, 2011 letter from the General Aviation Manufacturers Association and the January 13, 2011 letter from the National Business Aviation Association, respectively.
In accordance with Section 1.1206 of the Commission’s Rules, 47 C.F.R. § 1.1206, I provide two copies of this letter and its Appendices for inclusion in the Commission’s files.

Please direct any questions to me.

Respectfully submitted,

Stephen D. Baruch
Counsel for the United States GPS Industry Council

Enclosures

cc: (w/enclosures): List of Persons in Appendix 1 (by e-mail)
APPENDIX 1

LIST OF U.S. GPS INDUSTRY COUNCIL PARTICIPANTS AND REPRESENTATIVES IN JANUARY 13, 2011 MEETING

U.S. GPS Industry Council:

F. Michael Swiek, Executive Director
Raul R. Rodriguez (Lerman Senter PLLC) (via teleconference)
Stephen D. Baruch (Lerman Senter PLLC)

Garmin International:

Andrew Etkind (via teleconference)
Scott Burgett (via teleconference)
Doug Kealey (via teleconference)
Brian Poindexter (via teleconference)
Van Ruggles (via teleconference)
Micheal C. Simmons (via teleconference)
Bronson Hokuf (via teleconference)
Ted Gartner (via teleconference)
M. Anne Swanson (Dow Lohnes PLLC)

General Aviation Manufacturers Association:

Jens Hennig (via teleconference)

Trimble Navigation, Ltd.:

Ann Ciganer (via teleconference)
Bruce Peetz (via teleconference)
Russel H. Fox (Mintz Level, Cohn Ferris, Glovsky and Popeo, P.C.)
APPENDIX 2
Interference To The Installed User Base Of L-Band Space Services From The Proposed Reallocation Of The MSS L-Band To Primary Terrestrial Services With Ancillary MSS

Presentation to:
Commissioner Meredith Attwell Baker
Federal Communications Commission

By
The United States Global Positioning System (GPS) Industry Council

On
January 13, 2011
Overview

- Rationale for allocation of the L-band to space services
 - Introducing Ancillary Terrestrial Component (ATC) in the L-band
- Coordination process and operating conditions proposed for the first ATC license in 2002
 - Protection criteria for GPS based on out-of-band emission (OOBE) limits
- Proposing a reallocation of L-band from MSS to a primary terrestrial service
 - Introduces a different interference problem for the installed GNSS user base
 - Needs additional mitigation measures to be taken—beyond OOBE
- Possible mitigation techniques
- Overview of the installed GPS user base; maximum allowed power at a GNSS receiver
 - Three decades of user-driven GPS innovation have resulted in a pervasive public and private sector dependency on GPS position, navigation, and timing (PNT) information.
- Different regulatory treatment for contemplating a change in spectrum use
 - FCC NPRM/NOI on broadband;
 - FCC File Number SAT-MOD-20101118-00239
- Recommendations
Rationale For Allocation
Of The L-band To Space Services

- Distinctive physical properties of the L-band include a low loss characteristic through
 the atmosphere that makes it uniquely suited to space to ground communications.
- These physical properties are uniquely suited to the intended functions of:
 - Mobile-satellite services (MSS) in 1525-1559 MHz
 - Radionavigation Satellite Services (RNSS) in 1559-1610 MHz
- MSS and RNSS operate in adjacent bands where the spectrum has been allocated to
 space services for several decades:
 - Without any terrestrial transmissions
- As long as these adjacent bands remain allocated to truly satellite service operations
 as the primary service:
 - Their spectrum use (noise floor management) and power levels could be moderated
 to avoid interference between satellite services
 - Allowing operational “harmony” between a space-based communication service
 (MSS) and a broadcast, receive-only service (RNSS)
Introducing Ancillary Terrestrial Component (ATC) In The L-band

- Terrestrial and satellite operations have different physical and geometric characteristics
 - Makes it very difficult for the two to co-exist without the terrestrial transmissions interfering with the satellite transmissions.

- When MSS operators added ATC to complement and augment their space-service in 2002, this augmentation created the potential for significant new interference to adjacent space services operating in the L-band for:
 - MSS operations;
 - RNSS operations especially for adjacent GPS operations using the L1 (1559-1610 MHz)
 - The GPS L1 is bracketed by MSS operations (1525-1559 MHz and 1626.50 -1660.50 MHz)
 - This bracketing raises the GPS noise floor resulting from MSS operations on both sides of GPs L1

- According to FCC rules, ATC is a secondary allocation in the L-band allocated to MSS on a primary basis and is required to operate:
 - To not cause interference;
 - To accept interference

- As adopted, FCC MSS/ATC rules took great care to ensure that ATC providers remain bona fide satellite service providers by requiring:
 - MSS/ATC operators to maintain a ground spare satellite;
 - By definition that an MSS/ATC licensee offer an integrated service that requires including MSS in the offering to the customer
The First ATC License In 2002
Coordination Process And
Operating Conditions As Proposed

- Mobile Satellite Ventures (MSV), the operator of MSS/ATC in the L-band, began coordination of its ATC license with the Interdepartment Radio Advisory Committee (IRAC) and the National Telecommunications Information Administration (NTIA):
 - MSV originally proposed a single protection limit (-70 dBW/MHz) for GPS operations in the adjacent L1 band;
 - NTIA and the IRAC members encouraged MSV to confer with members of the GPS industry on protection of GPS;
 - MSV was the single operator of both the proposed MSS/ATC operations in the L-band;
 - ATC operations were to be deployed as a gap-filler to augment and extend MSS coverage in areas such as urban canyons;
 - MSV planned for operation of dual-mode handsets exclusively
 - As a practical matter, in making this commitment to exclusive dual-mode handset use, MSV had a particular interest not to overwhelm the satellite channels when close to an ATC base station.
 - None of these considerations speculated on the operation of a primary mobile terrestrial broadband communication service.
Protection Criteria for GPS
Out-of-Band Emission (OOBE) Limits

• In recognition of the increased potential for interference to adjacent space services, when ATC was introduced in the MSS bands, MSV and the U.S. GPS Industry Council negotiated an agreement on out-of-band emission (OOBE) limits to protect GPS operations in the L1 band:
 – Mobile terrestrial stations must limit their equivalent isotropically radiated power (EIRP) to
 – -95 dBW/MHz for wideband emissions; while narrowband emissions are subject to a limit of -105 dBW/kHz
 – Fixed or mobile base stations must adhere to a wideband EIRP density emission limit of -100 dBW/MHz; and a narrowband emission limit of -110 dBW/kHz

• Subsequently, MSV’s corporate successor, SkyTerra, approached the Council concerning its proposal to introduce ATC femtocells for indoor operations and the original joint agreement was modified for greater OOBE protection for indoor GPS use:
 – Femtocells operating indoors were agreed to limit EIRP density in the GPS band of -111.7 dBW/MHz for one operating; and -144.7 dBW/MHz when two femtocells are in the same room.

In each case, the underlying premise of these agreements is that the L-band operator of MSS/ATC (first MSV, then SkyTerra) agreed to protect GPS transmissions in the adjacent RNSS L-band.
Proposing A Reallocation Of L-band From MSS To A Primary Terrestrial Service

• Application request for modification of its authority for Ancillary Terrestrial Component (FCC File No. SAT-MOD-20101118-00239) seeks to effectively reinterpret its ATC rules to:
 – Operate a co-primary terrestrial wireless service in urban areas:
 • By deploying a densely populated network of strong signal transmitters whose emissions would effectively blanket entire urban areas;
 – While conducting its MSS operations outside of areas where its proposed terrestrial service would operate;
 – Thus, this application proposes to provide a primarily terrestrial wireless service with ancillary MSS, which is the opposite of the original premise of the service embodied in the current rules and its L-band license;
 – Instead of offering an integrated MSS/ATC handset exclusively as required in its existing ATC license, it proposes an integrated MSS/ATC service for which its retailers could choose to offer terrestrial handsets only to end-users
• The Applicant “estimates that the capacity of its fully deployed terrestrial network across all base stations will be tens of thousands of times the capacity of either of the Sky Terra satellites”:
 – Consequently, the physics and dynamics of this newly proposed terrestrial service would radically change and degrade the environment in which the adjacent GPS L1 signal operates; the ultimate effect would be a loss of GPS service.
• In comments filed in FCC ET Docket 10-142 (page 12, para. 1), LightSquared specifically requests the “Commission could, however, make it substantially easier to implement ATC domestically in the future by expanding the definition of MSS in its rules to include ATC and thus rendering ATC a primary service.”
Introduces A Different Interference Problem
For The Installed GNSS User Base
In The RNSS L-band

• Broadcast satellite signals are very low power at the Earth’s surface.

• Reallocation of the MSS L-band from a primary space-based service to a primary terrestrial service introduces a fundamental, difficult, interference problem at the GPS receiver because its ability to filter strong signals transmitting in nearby bands, while trying to listen to weak signals, is limited.

• Depending on the interference source, the effect on GPS receivers’ performance can result in desensitization, which prevents the receiver from functioning properly, and thus constitutes harmful interference.
Additional Mitigation Measures
Need To Be Taken Beyond OOBE

• When ATC was first authorized, the OOBE limits were negotiated to protect GPS

• These limits were established with the understanding that the business and operations plan for ATC was strictly as an infill service for where the MSS satellite signal did not reach.
 – With this understanding, GPS got an additional measure of protection because areas not served by MSS satellite signals were highly limited in scope, and GPS protection would be partly achieved by the interest of MSS operators in protecting the integrity of their own satellite signals
 – With the reallocation of the MSS L-band from a space-based service, to a primary terrestrial broadcast, this protection and the incentive for it, disappears

• Thus, additional mitigation measures will need to be taken beyond the established OOBE limits in the existing ATC authorizations.
Possible Mitigation Techniques

• Possible techniques to mitigate harmful interference to RNSS from the introduction of widely-deployed terrestrial transmitter on a primary basis:

1. Introduce new terrestrial broadband transmitters as far from mobile satellite applications as possible, especially from the RNSS L-1 band at 1559-1610 MHz:
 – Migrate the satellite services closer together and allocate terrestrial services at the edge of the satellite grouping as the bands get cleared.
 – The objective of this approach is to keep the two types of distinctly different (space-based versus terrestrial) services separate and have an acceptable amount of margin around the edge of all satellite services to protect their fundamental operations and utility to long-established installed user base of the adjacent L-band RNSS services and devices.

2. Establish a power limit for the newly-proposed terrestrial transmitters based on their frequency proximity to the satellite bands (in particular to the broadcast RNSS bands allocated to GPS/GNSS operations):
 – Terrestrial transmitters close in frequency to the GPS band would have to be limited to less than the current limit of 31.9 dBW in proportion to their proximity to the GPS band.

3. Establish a power limit for the newly-proposed terrestrial transmitters in the MSS band based on the density of installations.
 – While this approach does not eliminate the potential effect of new terrestrial transmitters overcoming GPS receiver selectivity, it does reduce the probability of this occurring.
The Installed GNSS User Base

• For purposes of this technical discussion, we developed an overview of today’s existing installed GPS user base who will be potentially adversely affected by the proposed reallocation of the MSS L-band to primary terrestrial wireless use. This technical input was developed based on analysis and test data for installed GNSS receivers;

• This overview represents a composite of receivers that serve a wide variety of markets: E911; police, fire, paramedic response; consumer applications; precision construction; structural deformation monitoring; machine control; survey; mapping; geographic information systems (GIS), including MSS-delivered correction services.

• Receiver sensitivity to signals across the L-band is shown with respect to the receiver antenna. Proposed co-primary terrestrial wireless service signals transmitting above the level shown on the graph, may, depending on the receiver type, jam the receiver. This graph can be used to establish a sphere of jamming from a terrestrial transmitter of a specific frequency and power.

• This overview, produced on short notice, serves to illustrate the extent of the problem. A thorough technical study of the effect on GPS receivers in the public and private sector from the newly proposed terrestrial L-band transmissions is required for definitive decision-making.
Maximum Allowed Power At A GNSS Receiver (Mask)
Technical Discussions With LightSquared

To date, the Council has had two technical discussions with LightSquared, including:

- To facilitate an understanding of the different technical problem at the GPS receiver created by the proposed terrestrial wireless service, the Council developed a technical overview of the existing installed user base of GPS that shows the:
 - Potentially adverse effect at the composite GNSS receiver:
 - Additional technical mitigation that would be needed to ensure that this existing installed user base continues to receive the GPS signals.

- LightSquared provided technical input on the proposed operating conditions (our discussions have not been conducted under a non-disclosure agreement)
Three Decades Of Expanding GPS Use

- A brief review of the evolution of GPS and its growing ubiquity can aid the understanding of practical and effective technical solutions to ensure that mobile terrestrial services are able to serve the many customers, who in all likelihood, already depend on GPS:

 1978 - First GPS satellite launched
 1981 - First civilian GPS product introduced for survey use by a Federal Agency
 1984 - GPS products introduced for timing infrastructure and commercial survey
 1989 - Mobile GPS handheld introduced for consumer use
 1990’s (early) - Dual-frequency GPS products introduced for scientific and commercial use in dynamic, high precision applications requiring a centimeter or better accuracy in real-time
 1995 - GPS system declared Full Operational Capability (FOC)
 1996 - Presidential Decision Directive (PDD) announced: “GPS provides substantial military advantage and is now being integrated into virtually every facet of our military operations [and] GPS is also rapidly becoming an integral component of the emerging Global Information Infrastructure, with applications ranging from mapping and surveying to international air traffic management and global change research.”

Late 1990s - Commercial high precision GPS networks in urban and rural areas:
 - Provide to multiple, diverse range of end-users the capability to leverage the utility of positioning, navigation, and timing (PNT) information to increase operational productivity.
Three Decades Of Expanding GPS Use

2000 – The United States recognized the increasing importance of GPS to civil and commercial users by ending the deliberate degradation of accuracy for non-military signals, known as Selective Availability

- Since this time, commercial and civil GPS applications have continued to multiply and their importance in critical infrastructures has increased significantly.

2004 – President’s Positioning, Navigation, Timing Policy declared that “services dependent on Global Positioning System information are now an engine for economic growth enhancing economic development and improving safety-of-life, and the system is a key component of multiple sectors of U.S. critical infrastructure,”

- “Over the past decade, the Global Positioning System has grown into a global utility whose multi-use services are integral to U.S. national security, economic growth, transportation safety, and homeland security and are an essential element of the worldwide economic infrastructure.”

2006 – GPS-enabled cellphones were introduced, including for E911 use

2008 – GPS-enabled mobile social networking applications introduced (e.g., Foursquare; Facebook, etc.)

Increasing small, medium, and large companies, having operations that depend on the availability of the GPS signals, are driving complete “site integration” of the PNT information available from these space-based RNSS signals.
FCC ET Docket 10-142 Proposed The Standard Regulatory Approach When Contemplating A Change In Spectrum Use (2GHz)

The FCC’s proceeding on MSS Broadband has two distinct parts:

1. The first part is a Notice of Proposed Rule-making (NPRM):
 - Proposes to allow use of secondary market leasing rules that already apply to terrestrial mobile systems in the context of MSS/ATC in the L-band, Big LEO, and 2 GHz MSS spectrum;
 - Other provisions are as proposed, but at its core this NPRM proposes a “relaxation” of the MSS/ATC rules to promote use of this spectrum for broadband applications;
 - Nevertheless, the NPRM is clear that the existing MSS/ATC rules will continue to govern the service, specifically noting the continued application of the OOBE in the authorizations of each of the licensed MSS/ATC systems.

2. The second part is a Notice of Inquiry (NOI):
 - The FCC invites comments on a potential later NPRM to consider allowing co-primary terrestrial use of only the 2 GHz MSS spectrum;
 - The significance of this NOI is that the FCC considers it premature to have an NPRM on the subject of the reallocation of the 2 GHz MSS spectrum to terrestrial use.

The issues raised by the FCC in this NOI are precisely the types of issues that need to be addressed when contemplating a change in use of spectrum, particularly when adding a co-allocation of a terrestrial use to space-based spectrum use.
FCC File No. SAT-MOD-20101118-000239
But, The Standard Regulatory Approach Is Not Proposed For The Same Change In Spectrum Use In The L-Band (As 2GHz)

- However, this is not how the FCC is proceeding in contemplating the proposed waiver of the MSS/ATC L-band applicant’s existing ATC authorization to effectively allow co-primary terrestrial use of the L-band allocated to primary MSS use:
 - What the FCC considered too premature for the MSS Broadband NPRM (reallcation) (ET Docket 10-142), is now being proposed in the L2 waiver (FCC File No. SAT-MOD-20101118-000239) without first seeking public comments first in an NOI followed by an NPRM.
- Thus, the FCC is now proposing an effective co-primary allocation to terrestrial use in spectrum allocated to a primary space service (MSS) which is not only without precedent, but also not following the FCC’s regulatory approach that the Commission has set out in its own companion proceeding (ET Docket 10-142).
Two Critical Questions

• If LightSquared already has authority to provide terrestrial service under its MSS/ATC license, why is the waiver needed?

• If a waiver is needed to provide the service they are proposing, why is the Commission not treating it for what it really is – a reallocation of spectrum – and using the same process as under the NOI in the MSS Broadband proceedings (ET Docket 10-142)?
Recommendations

To avoid creating a setback for the Nation’s broadband agenda and potential harm to the national GPS utility, ensure that:

1. Equivalent regulatory treatment is undertaken for contemplation of a co-primary terrestrial service allocation in the L-band allocated to MSS use as the FCC is proposing for the co-primary terrestrial service allocation in the 2GHz band allocated to MSS:
 - Consider the application for modification of the MSS L-band ATC license (FCC File No. SAT-MOD-20101118-00239) under the FCC NPRM/NOI on broadband (FCC ET Docket 10-142) to allow adequate development of the public record and robust public comment, especially to fully understand the potential for harmful interference to adjacent MSS and RNSS services in the L-band;

2. A comprehensive technical analysis of the potential for harmful interference is undertaken by the appropriate representatives of the United States Government (USG) having technical expertise, including specialized technical expertise, relevant to the broad range of public and private sector operating scenarios among the installed user base of the GPS signals in the RNSS L-band today; such as: FCC OET; NTIA; IRAC members;

3. All mitigation measures are identified and enabled to protect GPS use in the L-band prior to authorizing a terrestrial service in the L-band.
January 7, 2011

The Honorable Julius Genachowski
Chairman
Federal Communications Commission
445 12th Street, SW
Washington, DC 20554

Re: LightSquared Application Request for Modification of Its Authority for Ancillary Terrestrial Component (ATC) (FCC File No. SAT-MOD-20101118-00239)

Dear Mr. Chairman:

The Air Transport Association of America (ATA) is the trade association that represents the major U.S. passenger and cargo airlines. On behalf of our member airlines we urge the commission to evaluate with the utmost care the above-referenced application, which represents a major policy shift. This proposal effectively reallocates L-band spectrum from satellite to terrestrial service and consequently creates the potential for generating harmful interference to Global Positioning System (GPS) users.

The commission’s evaluation of the application must focus on that potential, including its effects on the civil aviation community. In light of the importance of attentiveness to the nature and extent of possible adverse consequences, the application should not receive expedited or “fast-track” treatment. Instead, the commission should terminate its review of this application and incorporate it within the current MSS Broadband NPRM/ROI, ET Docket No. 10-142, thus providing appropriate opportunity for public comment on the merits and risks of the proposed changes.

The comments that other GPS users are submitting in response to this application, including those of the U.S. GPS Industry Council, describe in considerable detail the potential for harmful interference to GPS users and the need to assess in either a formal rulemaking or hearing the application's implications. Rather than repeating those explanations, we want to emphasize that unimpeded GPS service is indispensable to safe and efficient airline operations and to our ongoing efforts to mitigate the environmental effects of those operations. Indeed, because of the ambitious Federal Aviation Administration (FAA) multibillion-dollar program, known as NextGen, to shift air traffic management to a satellite-based navigation and communications system, GPS will become even more important over the next decade. For these reasons, we are extremely concerned about spectrum issues and the possibility of inadvertent interference.

We ask that the commission evaluate the referenced application using procedures that enable interested federal agencies, including the National Telecommunications Information Administration and the FAA, as well as potentially affected GPS users to contribute to a thorough assessment of its implications.

Respectfully submitted,

[Signature]

Nicholas E. Calio

cc: The Honorable Janet Napolitano, Secretary of Homeland Security
 The Honorable Raymond H. LaHood, Secretary of Transportation
 The Honorable Gary F. Locke, Secretary of Commerce
 The Honorable Randy Babbitt, Administrator, Federal Aviation Administration
 The Honorable Charles F. Bolden, Jr., Administrator, National Aeronautics and Space Administration
 Mr. Karl Nebbia, Associate Administrator, Office of Spectrum Management, National Telecommunications and Information Administration
January 13, 2011

The Honorable Julius Genachowski
Chairman
Federal Communications Commission
445 12th Street SW
Washington, DC 20554

Subject: LightSquared Application Request for Modification of Its Authority for Ancillary Terrestrial Component (ATC) (FCC File No. SAT-MOD-20101118-00239)

Dear Mr. Genachowski:

On behalf of the General Aviation Manufacturers Association (GAMA), which represents over 70 of the world’s leading manufacturers of fixed-wing general aviation airplanes, engines, avionics, and components, we urge the Commission to re-evaluate the proposal to reallocate L-band spectrum from satellite to terrestrial service. The current proposal creates the strong likelihood for harmful interference to be generated towards Global Position System (GPS) users. Very severe effects on aeronautical and other GPS receivers have already been shown through test results by at least one of our member companies, to the extent that the guidance systems loses its GPS fix and is rendered inoperable for minutes at a time.

Because of the impending Federal Aviation Administration’s (FAA) multi-billion dollar transition to a satellite based navigation system as a part of NextGen, the importance of GPS is more crucial than ever. To hinder that development now would squander years of taxpayer’s investment in the current GPS architecture.

LightSquared’s proposed modification creates a new electromagnetic environment that could interfere with GPS receivers and create an unreliable signal. Ultimately, this issue is about safety in that the loss of such an integral navigation aid will create numerous hazards for the aviation community.

GAMA recommends that the Commission does not grant an expedited treatment to the application. Instead, the application should be included in the current MSS Broadband NPRM/ROI, ET Docket No. 10-142 thereby providing a proper opportunity for:

- robust public comment
- conducting and completing necessary studies
- thorough analysis of the risks to public safety, transportation system and aeronautical emergency communication systems.

We also urge the Commission to examine the potential interference that would arise before granting a waiver that would allow reallocation of spectrum use.
If you have any questions please contact me or Jens Hennig at 202-393-1500 or Jhennig@GAMA.aero.

Sincerely,

[Signature]

Peter Bunce
President & CEO
January 13, 2011

The Honorable Julius Genachowski
Chairman, Federal Communication Commission
Room 8-B201
445 12th Street, SW
Washington, DC 20554

Subject: FCC File No. SAT-Mod-20101118-00239, LightSquared Subsidiary LLC Request for Modification of Its Authority for an Ancillary Terrestrial Component

Dear Mr. Genachowski:

We are deeply concerned that the proposal by LightSquared referenced above will interfere with GPS receiver operation. It is imperative that the GPS national utility remain free of impediments to operation for more than 75 million North American GPS users.

This is not simply a “turf war” over spectrum allocation. It is a public safety issue that would threaten the national transportation grid, national financial system, national security, and virtually everyone in the United States.

The LightSquared proposal will result in an unreliable GPS signal reception with the following effects:

- Inability of emergency responders to effectively answer calls
- Loss of pilots’ primary means of navigation during a final approach
- Disruption of training exercises for military service members who routinely use commercial GPS systems
- Loss of the precise timing provided by GPS which is essential for operation of the financial system, power grid network synchronization, and cellular telephone system synchronization and cost accounting

Furthermore, the U.S. GPS constellation is currently undergoing an $8 billion upgrade. Approval of the LightSquared proposal without adequate testing will result in a poor return on this huge taxpayer investment.

We urge the FCC to conduct technical interference analysis BEFORE granting a waiver to effectively allow a reallocation of spectrum use from mobile satellite space service to terrestrial wireless service that is adjacent to the band where GPS operates. Further, we urge the FCC to consider this request from LightSquared under the Notice of Proposed Rule-Making process initiated in ET Docket No. 10-142 to ensure adequate opportunity for public comment.

Very truly yours,

Edward M. Bolen
President and CEO

cc: Commissioner Michael J. Copps
Commissioner Robert M. McDowell
Commissioner Mignon L. Clyburn
Commissioner Meredith A. Baker