November 11, 2011

VIA ELECTRONIC FILING

Marlene H. Dortch, Secretary
Federal Communications Commission
445 12th Street, S.W.
Washington, DC  20554

Re: Notice of Ex Parte Presentation in LightSquared Subsidiary LLC Request for Modification of its Authority for an Ancillary Terrestrial Component, IB Docket No. 11-109; IBFS File No. SAT-MOD-20101118-00239

Dear Ms. Dortch:

On November 9, 2011, Deere & Company (“Deere”) met with Julius Knapp, Chief, of the Office of Engineering and Technology (“OET”), Ron Repasi, Deputy Chief of OET, Walter Johnston, Chief, Electromagnetic Compatibility Division, OET, and Michael Ha, Engineer, OET to discuss the above-referenced application. Attending this meeting on behalf of Deere were Tony Thelen, Director, John Deere Intelligent Solutions Group, Paul Galyean, Director, Systems Engineering and IME/Robotics, Mark Rentz, Senior Systems Engineer, Steve Wilson, GNSS Products Director, Jerry Roell, Director, John Deere FarmSight, Bill Behan, Director, Public Affairs, along with Catherine Wang and Tim Bransford of Bingham McCutchen LLP, outside counsel to Deere.

During this meeting, we discussed the integral role that high precision GPS technology plays in today’s agricultural sector and in particular, the initiative to increase food production to meet soaring worldwide demand. For that purpose, every inch matters. As illustrated in the presentation attached as Exhibit I, we discussed how farmers rely on high precision GPS for greatly enhanced productivity, efficiency and safety, and also to materially reduce use of pesticides, fuel, seed, fertilizer, and water serving both critical environmental and costs concerns.

We discussed the status of the ongoing technical evaluation of the interference impact of LightSquared’s revised proposal to transmit a 10 MHz base station signal centered at 1531 MHz (“Low 10 MHz”). Given that prior testing has already demonstrated that the Low 10 MHz approach alone does not protect high precision GPS receivers, we discussed the need for rigorous and comprehensive testing, including consideration of various performance characteristics, of high precision receivers under
test that have been retrofitted with filters developed by LightSquared vendors that are intended to harden devices to Low 10 MHz transmissions. Such filters have not yet been made available to Deere. We generally discussed the technical challenges, including handset related issues, to allowing the use of L-Band satellite spectrum to be converted for use for stand-alone terrestrial services.

Deere reiterated its commitment to assist and cooperate with the Commission and interested parties in this process to objectively review and analyze equipment and proposals brought forward as mitigation solutions.

If you have any questions regarding this meeting, please do not hesitate to contact the undersigned.

Very truly yours,

/s/

Catherine Wang
Tim Bransford

Attachment

CC: Julius Knapp
Ron Repasi
Walter Johnston
Michael Ha
GPS Enabled Precision

Enables those who build and feed the world.

Immediate and Ongoing Needs

- population growth
- urbanization

Double food production by 2050 to meet world demand.

To meet this need – every inch matters.
GPS Enabled Precision

**Increases:**
- Yield
- Efficiency
- Productivity
- Safety

**Decreases:**
- Environmental Impact
- Inputs
- Costs
- Theft
GPS Enabled Precision Ag
Sprayer nozzles shut-off when not above crop section.
GPS Enabled Precision Ag

Field Planted without Swath Control

Field Planted with Swath Control Pro™
Precision Seeding

Overlap used to be measured in feet.

With precision GPS, overlap is now measured in inches.
Increasing Precision: Every Inch Matters
Water Optimization & Precise Planting
Increasing Precision: Every Inch Matters
GPS Enables Operator Efficiency
Precision Enabled Decision Making

Record and Adjust While Operating

Actionable Information for Analysis and Decision Making.
GPS Enabled Precision

John Deere Intelligent Solutions Group | November 2011